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Variational methods and nonlinear quasigeostrophic waves
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In this paper, we discuss zonally periodic steady quasigeostrophic waves in ab-plane channel, by
using variational methods. A class of steady quasigeostrophic waves are determined by the potential
vorticity field profile,g~•!, which is a function of the stream function. We show that zonally periodic
steady quasigeostrophic waves exist when the bottom topography and the potential vorticity field are
bounded. We also show that these waves are unique if, in addition, the potential vorticity field
profile is increasing and passes through the origin. Finally, we demonstrate that the zonal periodic
wave in the case withg(c)5arctan(c) is nonlinearly stable in the sense of Liapunov, under a
boundedness condition for the potential vorticity field, or equivalently, under suitable conditions on
the bottom topography,b parameter, and zonal periodT. © 1999 American Institute of Physics.
@S1070-6631~99!00804-1#
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I. INTRODUCTION

Geophysical fluid dynamicists often use simplified p
tial differential equation models which are intended to ca
ture the key features of large scale phenomena and filter
undesired fast~high frequency! oscillations. An important
example of such a partial differential equation is the qua
geostrophic model,1,2

qt1J~c,q!50, ~1.1!

whereq is the potential vorticity

q5Dc2
1

R2
c1by1h~x,y!,

c(x,y,t) is the stream function,x and y are coordinates in
the zonal and meridional directions, respectively,R is the
Rossby deformation radius~the distance over which th
gravitational tendency to render the free surface flat is b
anced by the tendency of the Coriolis acceleration to defo
the surface!, b.0 is the meridional gradient of the Corioli
parameter, andh(x,y) is the bottom topography. Moreove
D is the Laplacian operator in thex,y plane andJ( f ,g)
5 f xgy2 f ygx is the Jacobian operator. This same equat
also models plasma drift waves.3

The quasigeostrophic equation may be derived as an
proximation of the rotating shallow water equations by t
conventional asymptotic expansion in small Ross
number.1 Schochet4 has recently shown that the shallow w
ter flows converge to the quasigeostrophic flows in the li

a!Author to whom correspondence should be addressed. Electronic
duan@math.clemson.edu; Fax:~864!656-5230.
8751070-6631/99/11(4)/875/5/$15.00

Downloaded 07 Jan 2004 to 128.165.156.80. Redistribution subject to A
-
-
ut

i-

l-
m

n

p-

y

it

of zero Rossby number, i.e., at asymptotically high rotat
rate, for prepared initial data. This convergence is pointw
for finite time and in a certain Sobolev norm for space.

Steady patterns correspond to permanent geophysica
gimes and they have been studied in, e.g., Ref. 2, p. 221,
1, p. 93, Meacham and Flierl.5,6 There has also been muc
research on stability of steady states of the quasigeostro
equation; see, for example, Holmet al.,7 Benziet al.,8 McIn-
tyre and Shepherd,9 Mu,10,11 and Ripa.12

The methods of functional analysis have often been
plied effectively in geophysical fluid dynamics. See, e.
Bourgoise and Beale,13 and Babinet al.14,15 for recent inter-
esting results using this approach. This paper shows e
tence, uniqueness, and nonlinear stability of zonally perio
~i.e., periodic in eastward directionx) steady quasigeo
strophic waves under suitable conditions on the bottom
pography and the potential vorticity field, by applying we
known variational methods in direct calculations, togeth
with results from nonlinear partial differential equation
theory, that illustrate these methods.

II. STEADY QUASIGEOSTROPHIC WAVES

Steady quasigeostrophic waves satisfy

J~c,q!50. ~2.2!

SinceJ(c,2 (1/R2) c)50, this equation leads to

J~c,Dc1by1h~x,y!!50, ~2.3!

which implies thatc andDc1by1h(x,y) are functionally
dependent. We assume this dependence may be express
a semilinear elliptic partial differential equation
il:
© 1999 American Institute of Physics
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cxx1cyy1by1h~x,y!5g~c!, ~2.4!

whereg(c) is an arbitrary smooth function. This is related
the fact that steady states are constrained energy min
This equation also says that the Rossby deformation ra
does not directly play a role in the setup of this class
steady waves~since J(c,2 (1/R2) c)50). The quantity
cxx1cyy1by1h(x,y) at the left-hand side of~2.4! is the
potential vorticity with infinite Rossby deformation radiu
We just call it the potential vorticity in this paper. Onceg(c)
has been determined by specifying the potential vorticity
one point on each streamline,~2.4! determines the stead
flow ~Ref. 1, p.93!. Due to potential vorticity conservation
the boundedness ofg(c) means boundedness of the potent
vorticity field. In the following we assume thatg(c) may be
chosen and study zonally periodic steady flows.

III. VARIATIONAL METHODS AND TOPOGRAPHIC
EFFECT

We consider Eq. ~2.4! on the zonal domain
(b2channel!,

2`,x,`, 0,y,1.

This problem has a variational principle,dL50, with La-
grangian function

L~c!5E F1

2
cx

21
1

2
cy

22~by1h~x,y!!c1G~c!Gdxdy,

~3.5!

whereG(c)5*0
cg(s)ds. We seek a solutionc that is peri-

odic in zonalx direction and satisfies homogeneous Dirich
boundary conditions in meridionaly direction, namely,c
50 at y50 andy51.

We denoteLT
25LT

2((0,T)3(0,1))as theHilbert space of
square-integrable functions which are periodic inx with pe-
riod T.0. We also denoteHT

15HT
1((0,T)3(0,1))as the

subspace of the usual Sobolev spaceH1((2`,`)3(0,1))
consisting of functions which are periodic inx with period
T.0 and satisfy homogeneous Dirichlet boundary con
tions aty50 andy51. Similarly we can defineHT

p ,LT
p for

positive integersp. Moreover,i•i1 ,i•i are the usual norms
in HT

1 ,LT
2 , respectively. Note that since the Poincare´ in-

equality holds,16,17 the expression (*¹c•¹cdxdy)1/2 is an
equivalent norm in HT

1 . Here and hereafter,*dxdy
5*0

T*0
1dxdy. Moreover,

~w1 ,w2!5E w1w2dxdy

is the usual scalar product inLT
2 .

A weak zonally periodic solutionc(x,y) in HT
1 for ~2.4!

is defined to satisfy

2~¹c,¹f!1~by1h~x,y!,f!2~g~c!,f!50, ;fPHT
1

~3.6!

or
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E @2¹c•¹f1~by1h~x,y!!f2g~c!f#dxdy

50, ;fPHT
1 , ~3.7!

where the left-hand side defines a semibilinear form.
We use standard variational methods~as discussed in

Ref. 18, and references therein! to prove existence of zonally
periodic waves. To this end we show thatL(c) is weakly
lower semicontinuous and coercive, which implies~by Theo-
rem 1.2 in Ref. 18! thatL(c) attains its infimum. The mini-
mizer c* for this infimum is a weak zonally periodic solu
tion of ~2.4!. Recall thatL(c) is called weakly lower
semicontinuous, if for any weakly convergent sequence$cn%
in HT

1 , there holds

L~c!< lim inf
n→`

L~cn!.

If

L~c!→` as ici1→`,

thenL(c) is called coercive.
Bonaet al.16 considered steady periodic waves in stra

fied flows by variational methods. However, their results
valid for a different class of nonlinearity and do not apply
the present problem.

In showing that the LagrangianL(c) is weakly lower
semicontinuous, we first rewrite it as

L~c!5
1

2
~¹c,¹c!2~by1h~x,y!,c!

1E F E
0

c

g~s!dsGdxdy. ~3.8!

For the second term of the right-hand side to make sense
assume thatby1h(x,y) is in LT

2 , and this is possible when
say,h(x,y) is bounded andT-periodic inx. It is easy to see
that the first and the second term inL(c) are weakly lower
semicontinuous, noting the fact that the dual space (LT

2)8 is
contained in the dual space (HT

1)8 and that (LT
2)8 can be

identified with LT
2 itself. Now consider the third term. We

further assume thatg(c) is bounded,ug(c)u<M1 . Note that

lim inf
n→`

H E F E
0

cn
g~s!dsGdxdy2E F E

0

c

g~s!dsGdxdyJ
5 lim inf

n→`
E F E

c

cn
g~s!dsGdxdy

5 lim inf
n→`

E g~c1u~cn2c!!~cn2c!dxdy

>2 lim inf
n→`

M1E ucn2cudxdy50, ~3.9!

where we have used the mean value theorem of integral
culus to write *c

cng(s)ds5g(c1u(cn2c))(cn2c) for
someu in (0,1). Thus the third term inL(c) is weakly
lower semicontinuous.

These calculations prove the following:
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Lemma 1: If the bottom topography h(x,y) and potent
vorticity field g(c) are bounded, and moreover h(x,y)
T-periodic in x, then the Lagrangian functionL(c) is weakly
lower semicontinuous in HT

1 .
Next we show coercivity.
Lemma 2: Under the assumption of Lemma 1, the

grangian functionL(c) is coercive in HT
1 .

Proof: Since the bottom topography is bounde
uh(x,y)u<M2 , we have the estimate

E @~by1h~x,y!!c#dxdy<~b1M2!E ucudxdy

<C1 /e1C2eici1
2 , ~3.10!

by the Cauchy-Schwarz, Youngs, and Poincare´ inequalities,
whereC1 ,C2.0 are constants depending onb,M2 ,T, and
e.0 is to be determined. Similarly,

E F E
0

c

g~s!dsGdxdy<M1E ucudxdy<C3 /e1C4eici1
2 .

~3.11!

Thus, we have

L~c!5 1
2~¹c,¹c!2~by1h~x,y!,c!

1E F E
0

c

g~s!dsGdxdy

>S 1

2
2C2e2C4e D ici1

22C1 /e2C3 /e, ~3.12!

where we can takee.0 such that122C2e2C4e.0. There-
fore, the estimate~3.12! implies that

L~c!→` as ici1→`,

i.e.,L(c) is coercive. This completes the proof of Lemma
By Theorem 1.2 in Ref. 18, we conclude there exist

weak solutionc(x,y) in HT
1 of ~2.4!, i.e., there exists a wea

zonally periodic steady quasigeostrophic wave.
Actually this weak solutionc(x,y) is smooth~with con-

tinuous second order derivatives! as along ash(x,y) and
g(c) are smooth. In fact, it follows from theLp-elliptic
theory17 that c is in Hp for any p,`. The Sobolev embed
ding theorem17 implies thatc is also in the Ho¨lder space
C1,a, and, furthermore, the Schauder theory17 yields thatc,
is in fact in C2,a.

In conclusion, we obtain the following theorem:
Theorem 1: Consider the steady quasigeostroph

waves satisfying

cxx1cyy1by1h~x,y!5g~c!, ~3.13!

on the zonal domain(b-channel)

2`,x,`, 0,y,1,

wherec(x,y) is the stream function satisfying the homog
neous Dirichlet boundary condition at y50 and y51; b.0 is
the meridional gradient of the Coriolis parameter; h(x,y)
the smooth bottom topography; and the potential vortic
Downloaded 07 Jan 2004 to 128.165.156.80. Redistribution subject to A
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field g(c) is a smooth function. Assume that the bottom
pography h(x,y) and the potential vorticity field g(c) are
bounded.

(i) If h(x,y) is T-periodic in x, then there exists a smoo
zonally periodic steady quasigeostrophic wave of period
in particular,

(ii) If h5h(y) is independent of x, then, for any T.0,
there exists a smooth zonally periodic steady quasig
strophic wave of period T.

IV. UNIQUENESS AND NONLINEAR STABILITY
OF ZONAL PERIODIC PATTERNS

In this section, we discuss the uniqueness and nonlin
stability of zonally periodic steady quasigeostrophic wav
We assume thatg(c) is increasing and passes through t
origin, i.e.,g(0)50. This implies that

g~s!s>0, ~4.14!

~g~s1!2g~s2!!~s12s2!>0, ~4.15!

for all s. We can now use a result in Zeidler,19 Corollary
26.13, p. 572, to conclude that the zonally periodic stea
quasigeostrophic waves claimed in Theorem 1 are uniq
Thus, we have the following result:

Theorem 2: Assume the conditions in Theorem 1. Mor
over, assume that the potential vorticity field g(c) is increas-
ing and passes through the origin (g(0)50), as well as being
bounded.

Then, the zonally periodic steady quasigeostrop
waves whose existence is shown in the proof of Theore
are unique.

For example, potential vorticity fieldsg(c) satisfying
the conditions of Theorem 2 areg(c)5tanh(c) and g(c)
5arctan(c). Note that tanh(s) is increasing, tanh(0)50,
and arctan(c) is increasing, arctan(0)50.

Under a slight additional condition, the correspondi
unique zonally periodic steady quasigeostrophic waves
be shown to be nonlinearly stable~in the sense of Liapunov!.
For existence~Theorem 1! and uniqueness~Theorem 2! of
zonally periodic steady quasigeostrophic waves, we have
sumed thatg(•) is bounded and increasing. The nonline
stability result ~in the spirit of Arnold’s first theorem! in
Holm et al.7 requires that the derivative of the inverse
g(•) to be bounded between two positive constants. T
implies that the derivative ofg(•) itself is also bounded
between two positive constants, which further implies th
the potential vorticity fieldg(•) is unbounded. Thus the non
linear stability result in Ref. 7 does not directly apply in o
case. Note also that some other nonlinear stability results
steady quasigeostrophic waves are in the spirit of Arnol
second theorem, which requires that the inverse ofg ~and
thus g itself! to be decreasing~e.g., Refs. 9–12! does not
apply to our case either.

However, by following Holmet al.,20 we modify the in-
verse ofg ~or g itself! so that it satisfies the nonlinear stab
ity conditions in Holmet al.,7 and thus we can still show
nonlinear stability, under suitable conditions on the botto
topographyh(x,y), b parameter, and periodT.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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We illustrate this idea in an example with the potent
vorticity field g(c)5arctan(c). As we remarked above, in
this case, we have a unique zonally periodic steady quasi
strophic wave of periodT, c0(x,y), when topography
h(x,y) satisfies the conditions in Theorem 1. In the follow
ing we find sufficient conditions so thatc0(x,y) is nonlin-
early stable.

Recall that

Dc02
1

R2
c01by1h~x,y!5arctan~c0!, ~4.16!

or

c05tan~Dc02 ~1/R2! c01by1h~x,y!!. ~4.17!

Note that (d/ds)tan(s)5 @1/cos2(s)#.0 ~for 2 p/2,s
,p/2), but this derivative is not bounded between two po
tive constants.

As in Ref. 20 we consider the conserved functional

HC~c!5E F1

2
~¹c!21

1

2R2
c21C~q!Gdxdy, ~4.18!

where the potential vorticityq(x,y)5Dc2 (1/R2) c1by
1h(x,y), andC(q) is a conserved quantity called a Casim
function. To complete the nonlinear stability argument,
need to chooseC(q) so thatc0 is a critical point ofHC(c),
which requires that C(q)52*0

qg21(s)ds, and that
2C9(q)5(g21)8 is bounded between two positive co
stants.

In the caseg(s)5arctan(s) we have

C~s!52E
0

s

tan~s!ds5 log~ ucos~s!u!, ~4.19!

for 2 p/2,s,p/2. So C(s) is convex downward, bu
C9(s) is unbounded below. We modifyC(s) to C̃(s) so that
2C̃9(s) is bounded between two positive constants andc0

is a critical point ofHC̃(c).
To this end, we assume that the potential vortic

q0(x,y) corresponding to the zonally periodic steady st
takes values within (2 p/2 , p/2), the domain of definition
of tan(s). We denote that q0(x,y) takes values in
@2 (p/2) 1c1 , (p/2) 2c2#, where 0,c1 ,c2,p/2. Actu-
ally, this adds a condition on the bottom topographyh(x,y)
andb; see~4.16!. With this assumption, we can then modi
C(s) by cutting it off outside 2 (p/2) 1c1<s< (p/2)
2c2 , and patch two quadratic polynomials smooth
~matching the first and second order derivatives! at end
pointss52 (p/2) 1c1 , (p/2) 2c2 . Namely, we define

C̃~s!55
2

1

2 cos2~2p/21c1!
s21a1s1b1, s<2

p

2
1c1

C~s!5logucos~s!u, 2
p

2
1c1<s<

p

2
2c2

2
1

2 cos2~p/22c2!
s21a2s1b2 , s>

p

2
2c2

,
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wherea1 ,b1 ,a2 ,b2 are appropriately chosen constants.
Since C̃ and C coincide on the interval

@min q0,max q0#, it follows that c0 is a critical point of
HC̃(c). Moreover,2C9 is bounded between two positiv
constants

0,
1

cos2~p/22max~c1 ,c2!!
<2C̃9~s!

<
1

cos2~p/22min~c1 ,c2!!
, ~4.20!

for all s.
Then we can use the nonlinear stability result in Ho

et al.7 for ~multilayer! quasigeostrophic steady flows, or fo
low the argument in Holmet al.,20 to conclude nonlinear
stability for the unique zonally periodic steady quasige
strophic waves claimed in Theorem 2. Note that for the
riodic zonal channel here, the argument in Ref. 7 still go
through in our case. See Benziet al.8 for discussions on
zonal periodic boundary conditions. Therefore we have
following result:

Theorem 3: Assume that the bottom topography h(x
satisfies the conditions in Theorem 1 and consider the c
with the potential vorticity field g(c)5arctan(c). By Theo-
rem 1 and Theorem 2, there exists a unique zonally perio
(with period T) steady quasigeostrophic wavec0(x,y) with
the corresponding potential vorticity q0(x,y).

If the potential vorticity field q0(x,y) takes values in a
closed interval within (2(p/2), (p/2)), the domain of
definition for g21(s)5tan(s), then the unique zonally
periodic quasigeostrophic wave is nonlinearly stable (in t
sense of Liapunov) in the norm*@(¹c)21 (1/R2) c2

1(D2c)2#dxdy.
We remark that, although the nonlinear stability con

tions are in terms of potential vorticity, they equivalently p
constraints on the bottom topography,b parameter, and
zonal periodT.

V. DISCUSSIONS

We have found conditions for the existence, uniquene
and nonlinear stability of zonally periodic steady quasige
strophic waves in ab-plane channel. Namely, these wav
exist and are unique, provided~i! the bottom topography
h(x,y) is bounded, and~ii ! the potential vorticity fieldg(c)
is bounded, and~for uniqueness! the functiong is increasing
and passes through the origin. Moreover, the zonal perio
wave in the case withg(c)5arctan(c) is shown to be non-
linearly stable in the sense of Liapunov, under a bound
ness condition for the potential vorticity field for this zon
periodic wave, or equivalently, under suitable conditions
the bottom topography,b parameter, and zonal periodT.
This stability analysis can also be performed for the c
g(c)5tanh(c) or other cases.

We also remark that if the bottom topography is ind
pendent of zonal direction,h5h(y), then~2.4! becomes

cxx1cyy1by1h~y!5g~c!. ~5.21!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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In this case, there existsx-independentnonlinear quasigeo
strophic waves satisfying

cyy1by1h~y!5g~c~y!!, ~5.22!

which may be regarded as zonally periodic withany period.
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